甘叠

2024年03月19日 16:42  点击:[]

基本信息

姓名: 甘叠

性别:

所属部门: 机器人与信息自动化研究所

行政职务:

职称: 副教授

学历: 博士

所学专业: 系统理论

办公电话:

电子邮件: gandie@nankai.edu.cn

研究方向: 系统辨识,机器学习理论,隐私保护

个人简介

教育背景

2013/09-2017/07  山东大学(数学学院华罗庚班)  数学与应用数学  学士

2017/09-2022/07  中国科学院数学与系统科学研究院   系统理论   博士

工作经历

2022/07-2024/08  中关村国家实验室  控制科学与工程   博士后 

2024/08-至今    15vip太阳集团官网

研究兴趣

  • 多智能体协同、分布式自适应估计

  • 机器学习、稀疏优化理论

  • 隐私保护及其相关计算

  • 网络化系统安全分析与控制

  • 计算法学等交叉研究


常欢迎校内外保研、考研,对相关研究感兴趣的同学联系(gandie@nankai.edu.cn)[2024年考研招生名额2名],优先考虑数学、自动化、智能、计算机等相关专业背景的同学。也非常欢迎想提前参与科研训练的本科生咨询联系!


科研项目、成果、获奖、专利

科研项目

  1. 中国博士后科学基金站中特别资助项目(国家级), 2023/07-2024/07,主持

  2. 中国博士后科学基金第72批面上资助项目(国家级),2022/12-2024/07,主持

  3. 复杂系统研究生基金(省部级),2021/01-2022/06,主持

专利

  1. 甘叠, 刘志新, 吕金虎. 一种分布式自适应协同跟踪定位方法,2023.8,发明专利,ZL202310581146.9

  2. 甘叠, 陈书凝, 吕金虎, 陶冶. 一种分布式压缩感知稀疏时变信道估计方法, 2023.11, 发明专利, ZL202311566816.6

  3. 陶冶, 吕金虎, 谭少林, 甘叠. 一种安全鲁棒的室内行人轨迹跟踪方法和系统,2024.2,发明专利,ZL202410038094.5

荣誉奖项

  1. 2023年北京数学会首届青年优秀论文奖

  2. 2022年北京市优秀毕业生(博士)

  3. 2021年第五届系统科学大会最佳张贴论文奖

  4. 2020年博士生国家奖学金


撰写论文、专著、教材等

  • 刊论文(*代表通讯作者)

  1. D. Gan, S. Xie, Z. Liu, J. Lv, Stability of FFLS-based diffusion adaptive filter under cooperative excitation condition, IEEE Transactions on Automatic Control, 69(11):7479-7492, 2024. (JCR Q1)

  2. D. Gan, Z. Liu,  Distributed sparse identification for stochastic dynamic systems under cooperative non-persistent excitation condition, Automatica, 151:110958, 2023. (JCR Q1)

  3. D. Gan, Z. Liu, Distributed order estimation of ARX model under cooperative excitation condition, SIAM Journal on Control and Optimization, 60(3): 1519-1545, 2022. (JCR Q1)

  4. D. Gan, Z. Liu, Convergence of the distributed SG algorithm under cooperative excitation condition, IEEE Transactions on Neural Networks and Learning System, 35(5):7087-7101, 2024. (JCR Q1)

  5. D. Gan, S. Xie, Z. Liu, Stability of the distributed Kalman filter using general random coefficients, Science China Information Sciences, 64: 172204, 2021. (JCR Q1)

  6. D. Gan, Z. Liu, Performance analysis of the compressed distributed least squares algorithm, Systems & Control Letters, 164: 105228, 2022. 

  7. S. Xie, S. Zhang, Z. Wang, D. Gan*, Compressed least squares algorithm of continuous-time linear stochastic regression model using sampling data, Journal of Systems Science and Complexity, 37(4):1488-1506, 2024.  (JCR Q1) 

  8. S. Xie, D. Gan*, Z. Liu, Two-layer diffusion adaptive filters over directed Markovian switching networks, IEEE Control Systems Letters (with IEEE ACC 2024), 7: 3501-3506, 2023. 

  9. R. Li, D. Gan, S. Xie, J. Lv, Stability and performance analysis of the compressed Kalman filter algorithm for sparse stochastic systems, Science China Technological Sciences, 67(2): 380-394, 2024. (JCR Q1)

  10. R. Li, D. Gan, H. Gu, J. Lv, Distributed state estimation for sparse stochastic systems based on compressed sensing, IEEE Transactions on Circuits and Systems II: Express Briefs, 71(8):3840-3844, 2024.

  11. X. Zhu, D. Gan, Z. Liu, Performance analysis of least squares of continuous-time model based on sampling data, IEEE Control Systems Letters (with IEEE CDC 2022), 6: 3086-3091, 2022.

  12. X. Zhu, D. Gan, Z. Liu, Distributed least squares algorithm of continuous-time stochastic regression model based on sampled data, Journal of Systems Science and Complexity, 37(2):609-628, 2024. (JCR Q1)

  13. R. Li, G. Chen, D. Gan, H. Gu, J. Lv, Stackelberg and Nash equilibrium computation in non-convex leader-follower network aggregative games, IEEE Transactions on Circuits and Systems I: Regular Papers, 71(2):898-909, 2024. (JCR Q1)

  14. 王芳,甘叠,刘念,认罪认罚量刑从宽实效研究——基于故意伤害罪轻罪的数据解读山东大学学报(哲学社会科学版),2022年第3期,65-77.(中文核心)

  • 会议论文(*代表通讯作者)

  1. D. Gan, Z. Liu, On the stability of Kalman filter with random coefficients, IFAC-PapersOnLine, 53(2):2397-2402, 2020. 

  2. D. Gan, Z. Liu, Strong consistency of the distributed stochastic gradient algorithm, Proceedings of IEEE 58th Conference on Decision and Control, Nice, France, pp. 5082-5087, 2019.

  3. S. Chen, D. Gan*, K. Liu, J. Lv, Stability of compressed recursive least squares with forgetting factor algorithm, IFAC-PapersOnLine, 56(2):10240-10245, 2023.

  4. S. Chen, D. Gan*, S. Xie, J. Lv, Tracking bound of compressed distributed recursive least squares with forgetting factor,  Proceedings of 14th Asian Control Conference, China, Dalianpp. 2434-2439, 2024.

讲授课程


社会兼职

IEEE会员、中国自动化学会会员




关闭